functionally open set - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

functionally open set - traduction vers russe

SUBSET THAT IS BOTH OPEN AND CLOSED
Clopen; Closed-open; Clopen sets; Clopen subset; Open-closed set; Closed-open set; Closed and open

functionally open set      
функционально открытое множество
open set         
SET THAT DOES NOT CONTAIN ANY OF ITS BOUNDARY POINTS
Open subset; Open (topology); Open region; Open subsets; Open sets; Open (mathematics); Open superset; ⟃; ⟄

общая лексика

открытое множество

open subset         
SET THAT DOES NOT CONTAIN ANY OF ITS BOUNDARY POINTS
Open subset; Open (topology); Open region; Open subsets; Open sets; Open (mathematics); Open superset; ⟃; ⟄

математика

открытое подмножество

Définition

РЕВОЛЬВЕР
а, м.
Многозарядное ручное огнестрельное оружие с магазином в виде вращающегося барабана. Револь-верный - относящийся к револьверу, револьверам.||Ср. БРАУНИНГ, БУЛЬДОГ, ВАЛЬТЕР, КОЛЬТ, МАУЗЕР, НАГАН, ПАРАБЕЛЛУМ, ПИСТОЛЕТ.

Wikipédia

Clopen set

In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open and closed. That this is possible may seem counter-intuitive, as the common meanings of open and closed are antonyms, but their mathematical definitions are not mutually exclusive. A set is closed if its complement is open, which leaves the possibility of an open set whose complement is also open, making both sets both open and closed, and therefore clopen. As described by topologist James Munkres, unlike a door, "a set can be open, or closed, or both, or neither!" emphasizing that the meaning of "open"/"closed" for doors is unrelated to their meaning for sets (and so the open/closed door dichotomy does not transfer to open/closed sets). This contrast to doors gave the class of topological spaces known as "door spaces" their name.

Traduction de &#39functionally open set&#39 en Russe